Applying homeostatic neural controller to multi-legged robot and adaptivity to novel disruptions
نویسندگان
چکیده
A robot implemented with a homeostatic neural controller can adapt to disruptions that have not been experienced before. When novel changes occur, the homeostatic neural controller autonomously detects the disruptions from their behaviors and recreates new motions to achieve desired behaviors. In previous studies, the homeostatic neural controller has been only applied to a robot with a simple structure, i.e. wheeled robots which are controlled by adjusting the outputs of wheel motors. It is not clear whether the homeostatic neural controller can work properly when it is applied to a robot with a more complex structure. Therefore, we implement the homeostatic neural controller onto the multi-legged robot and investigate adaptivity. As a result, the robot with the homeostatic neural controller recreates new motion patterns to achieve a desired behaviors after novel disruptions that break a leg.
منابع مشابه
Stiffness control of a legged robot equipped with a serial manipulator in stance phase
The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the capabilities of the robot. The position/force control problem of such a robot in the stance phase with point contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. Active joints of the legs and serial manipulator are used to exert the de...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملDual Space Control of a Deployable Cable Driven Robot: Wave Based Approach
Known for their lower costs and numerous applications, cable robots are an attractive research field in robotic community. However, considering the fact that they require an accurate installation procedure and calibration routine, they have not yet found their true place in real-world applications. This paper aims to propose a new controller strategy that requires no meticulous calibration and ...
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کامل